THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW8 Solution

Yan Lung Li

1. (P. 246 Q5)

Case 2: $x=0$: Then

$$
\lim _{n \rightarrow \infty} \frac{\sin n x}{1+n x}=\frac{0}{1+0}=0
$$

Case 3: $0<x<+\infty$: Since $|\sin n x| \leq 1$ for all $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} \frac{1}{1+n x}=0$, we have

$$
\lim _{n \rightarrow \infty} \frac{\sin n x}{1+n x}=0
$$

2. (P. 247 Q15)
(i) Fix $a>0$, then by Q5, for all $x \in[a,+\infty), \lim _{n \rightarrow \infty} \frac{\sin n x}{1+n x}=0$. We claim the convergence is uniform in $[a,+\infty)$:

Given $\epsilon>0$, since $\lim _{n \rightarrow \infty} \frac{1}{1+n a}=0$, there exists $N \in \mathbb{N}$ such that $\frac{1}{1+N a}<\epsilon$. Then for all $n \geq N$, $x \in[a,+\infty)$,

$$
\begin{aligned}
\left|\frac{\sin n x}{1+n x}\right| & \leq \frac{1}{1+N a} \\
& <\epsilon
\end{aligned}
$$

Therefore, the convergence is uniform in $[a,+\infty)$.
(ii) We claim that the convergence is not uniform in $[0,+\infty)$: By Q5, if the convergence were uniform, the uniform limit function would be given by $f(x)=0$ for all $x \in[0,+\infty)$.

We use Lemma 8.15 of the textbook to show that $f_{n}(x)=\frac{\sin n x}{1+n x}$ does not converge to f :
Choose $\epsilon_{0}=\frac{1}{1+\pi}, n_{k}=k, x_{k}=\frac{\pi}{2 k}$. Then

$$
\begin{aligned}
\left|f_{n_{k}}\left(x_{k}\right)-f\left(x_{k}\right)\right| & =\left|\frac{\sin \frac{\pi}{2}}{1+\frac{\pi}{2}}\right| \\
& =\frac{1}{1+\frac{\pi}{2}} \\
& >\frac{1}{1+\pi}=\epsilon_{0}
\end{aligned}
$$

Therefore, the convergence is not uniform.
3. (P. 247 Q22)

To show the uniform convergence of f_{n} to f, note that $f_{n}(x)-f(x)=\left(x+\frac{1}{n}\right)-x=\frac{1}{n}$, and hence $\left\|f_{n}-f\right\|_{\mathbb{R}}=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, by Lemma 8.1.8 of the textbook, f_{n} converges uniformly to f on \mathbb{R}.

To show f_{n}^{2} does not converge uniformly on \mathbb{R}, by Lemma 8.1.10 of the textbook, it suffices to find some $\epsilon_{0}>0$ such that for all $N \in \mathbb{N}$, there exists $m, n \geq N$ and $x \in \mathbb{R}$ such that

$$
\left|f_{n}^{2}(x)-f_{m}^{2}(x)\right| \geq \epsilon_{0}
$$

Let $\epsilon_{0}=1$, for all $N \in \mathbb{N}$, chooses $m=2 N, n=N, x=N$, then

$$
\begin{aligned}
\left|f_{n}^{2}(x)-f_{m}^{2}(x)\right| & =\left|\left(x+\frac{1}{n}\right)^{2}-\left(x+\frac{1}{m}\right)^{2}\right| \\
& =\left|\left(\frac{2}{n}-\frac{2}{m}\right) x+\frac{1}{n^{2}}-\frac{1}{m^{2}}\right| \\
& =\left|\left(\frac{2}{N}-\frac{2}{2 N}\right) N+\frac{1}{N^{2}}-\frac{1}{4 N^{2}}\right| \\
& =1+\frac{3}{4 N^{2}}>1=\epsilon_{0}
\end{aligned}
$$

Therefore, f_{n}^{2} does not converge uniformly on \mathbb{R}.
4. (P. 247 Q23) Since f_{n}, g_{n} converges uniformly to f, g respectively on A, and that f_{n}, g_{n} are bounded for all $n \in \mathbb{N}$, there exists $B, C \in \mathbb{R}$ such that $\|f\|_{A} \leq B$ and $\|g\|_{A} \leq C$ (Why?). To show $f_{n} g_{n}$ converges uniformly to $f g$ on A, we use the definition of uniform convergence: Let $0<\epsilon<1$ be given, by Lemma 8.1.8, there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left\|f_{n}-f\right\|_{A}<\frac{\epsilon}{2(1+C)}$ and $\left\|g_{n}-g\right\|_{A}<\frac{\epsilon}{2 B+1}$. In particular, $\left\|g_{n}\right\|_{A} \leq \epsilon+C<1+C$

Then for all $x \in A, n \geq N$,

$$
\begin{aligned}
\left|f_{n} g_{n}(x)-f g(x)\right| & \leq|f(x)|\left|g(x)-g_{n}(x)\right|+\left|g_{n}(x)\right|\left|f(x)-f_{n}(x)\right| \\
& <B \cdot \frac{\epsilon}{2 B+1}+(1+C) \cdot\left(\frac{\epsilon}{2(1+C)}\right) \\
& <\epsilon
\end{aligned}
$$

Therefore, $f_{n} g_{n}$ converges uniformly to $f g$ on A.
Remark: Many students use the boundness of each function of the sequence $\left(f_{n}\right)$ (similarly for $\left(g_{n}\right)$) to argue that there exists $M \in \mathbb{R}$ (independent of n) such that $\left\|f_{n}\right\|_{A} \leq M$ for all $n \in \mathbb{N}$. This is not true in general (consider $f_{n}(x) \equiv n$ on \mathbb{R}) unless $\left(f_{n}\right)$ converges uniformly to some function on A. One has to use Cauchy criterion to argue the existence of such M.

